

Ph llis Franklin John D'Arms

Robert M. Solo Francis Oakle Calvin C. Jones

AMERICAN ACADEMY OF ARTES SCAPNERS

$\mathbf{x} = \mathbf{x} + \mathbf{x} +$

Robert M. Solo	Francis Oakle
Ph llis Franklin	John D'Arms

Calvin C. Jones

0-87724-031-0

 $(x + V) \stackrel{\text{def}}{=} (x + S) \stackrel{\text{def}}{=} (x + S)$

// Site / S

 $S = \frac{1}{2} + \frac{1}{2} +$

Viert, tis in its second second second

, 🔼

 $I_{X_{2}} \downarrow_{V_{2}} \downarrow_{$

 $= \left\{ \begin{array}{c} \mathbf{v} \in \mathbf{V} \\ \mathbf{v$ • 35⁴]*• * Lete set *] • * 5* * 5 * 7 / # * * 7 / */* I B. M. A. & G. B. B. B. B. B. B. C. S. B. J. S. A. J. B. & & B. ુર્થય 20 0 0] 0 2 0] 0 2]0 4 22 01 − 20 − 06 20 0-20] 4 8 0 16 4 25 0 140 $\frac{1}{1} \left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} - \frac{1}{2} \right] \left[\frac{1}{2} \frac{1}{4} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} - \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} - \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1$ •]]•°•4°6«r≪°ru = 1°•]• 2″r¹•]u = r = 1 2″r¹ 1] 1 2 2 4] 1 0 1] 0] 0 1 10 10 0 of a 1 1 10 10 0

 $[\mathbf{A}_{\mathbf{A}}]_{\mathbf{A}} = [\mathbf{A}_{\mathbf{A}}]_{\mathbf{A}} + [\mathbf{A}_{\mathbf{A}}]_{\mathbf{A}}$ $[\mathbf{h} \bullet \mathbf{h}_{\mathbf{X}} \mathbf{g}_{\mathbf{G}}]] \mathbf{F} \bullet \mathbf{h}_{\mathbf{X}} \mathbf{D}_{\mathbf{J}} \mathbf{D}_{\mathbf{U}} \bullet \mathbf{h}_{\mathbf{X}} \mathbf{g}_{\mathbf{J}} \mathbf{D}_{\mathbf{J}} \mathbf{g}_{\mathbf{G}} \mathbf{v} \mathbf{h}_{\mathbf{X}} \mathbf{g}_{\mathbf{J}} \mathbf{h}_{\mathbf{J}} \mathbf{h$] Ze e 27, ° e 28 e e~ Tee °7, Ze eT °27, •]ee enee • • ° e ` ` $[\mathbf{F}_{\mathbf{1}} \bullet \mathbf{1}_{\mathbb{Q}} \bullet$ 30 140 - 1 0 1 0 40 0 1 40 0 1 0 1 1 2 - 2 - 2 - 0 1 $\begin{array}{c} \bullet \cdot \end{array}] \bullet]_{66 \times 3} \stackrel{\circ}{_{\times}} \bullet \quad \bullet \quad \bullet \quad] \stackrel{\circ}{_{\circ}} \stackrel{\circ}{_{\cdot}} \bullet \bullet]_{1} \stackrel{\circ}{_{\cdot}} \bullet \quad \bullet \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \bullet \bullet]_{1} \stackrel{\circ}{_{\cdot}} \bullet \quad \bullet \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \bullet \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}} \bullet \stackrel{\circ}{_{\cdot}} \stackrel{\circ}{_{\cdot}}$ 10 6] 9 ° 6] 9 J 4 8 J 6 1 1 4 2 8] 6 ° 6] 9] A J 6 ° 8 $\mathbf{1}_{\mathbf{0}} \bullet - \mathbf{0} \bullet \mathbf{1}_{\mathbf{0}} \bullet \mathbf{1}_{\mathbf{0}} \cdot \mathbf{A}_{\mathbf{1}} = \mathbf{0} \bullet \mathbf{1}_{\mathbf{1}} \bullet \mathbf{0}_{\mathbf{1}} \bullet \mathbf{0}_{\mathbf{1}}$

MAKING THE HUMANITIES COUNT

1,05,4 0 1 0 0 0 0 0 0 0 0 0 0 1 50 0 1 50 0 5 5 0 1 50 0 5 50 0 5 50 0 5 50 0 5 50 0 5 50 0 5 50 0 5 50 0 5 50 • \$\$\$\$\$\$]\$] •**1\$ ••* \$\$ \$ { }\$\$\$\$\$ \$ \$ • 1 } • •]-2000 1] 1 2 2 4 2 2] 0 2 1 0 4 1 00 4 3 4 2 1 0 4 2 0 0 ٥]٥٥⁴] ٢[.]] ٥⁴ . ۲ 6 5² ⁴ ٢³ 1 ⁴ ¹ ⁴ ¹ ⁴ ¹ ⁴ ¹ $\bullet \bullet \bullet \bullet_{\mathcal{S}_{\mathcal{S}}} \bullet_{\mathcal{S}} \bullet \bullet \bullet_{\mathcal{S}} \bullet_{\mathcal{S}} \bullet \bullet \bullet_{\mathcal{S}} \bullet_{\mathcal{S}$ 1. 6. 0 × 1 (0 × 1. 6. 36 (- 6. 1) 6 (0 (3. 10) 0 (3. 10) 3 ($\mathbf{A}_{\mathbf{0}} \bullet \cdot \mathbf{A}_{\mathbf{0}} \bullet \mathbf{A}_{\mathbf{0}}$ * 110 * 51 x 0 10 5 4 x] 5 1 x .

 $[\bullet,\bullet,\bullet] \circ [\circ,\bullet] \circ [\circ,\bullet] \bullet [\bullet,\bullet] \circ [\circ,\bullet] \circ [\circ$ διι , ι, ι, ι, Αγχοι, ονχος γουρουλογια, ansosiae · Ale · E · · · J Ble · J , Ble · · · · $[\mathbf{1}_{\mathbf{x}},\mathbf{1}_{\mathbf{x}},\mathbf{1}_{\mathbf{x}}] = [\mathbf{1}_{\mathbf{x}},\mathbf{1}_{\mathbf{x}}] = [\mathbf{1}_{\mathbf{x}},\mathbf{1$ A 1 ... ; A .] I. ... , A . . , He .. . Ann 1 ... ; G . $\bullet_{\infty} \in [\mathbf{K}_{\mathbf{0}} \bullet]_{\mathcal{A}} \in [\mathbf{K}_{\mathbf{0}$ $\mathbf{A}_{\mathbf{x}}^{\mathbf{x}} \left[\mathbf{y} \in \mathbf{H}_{\mathbf{x}}^{\mathbf{x}} \right] \left\{ \mathbf{x} \in \mathbf{Y}^{\mathbf{x}} \left\{ \mathbf{D}_{\mathbf{x}}^{\mathbf{x}} \in \mathbf{D}_{\mathbf{x}}^{\mathbf{x}} \right\} = \left[\mathbf{y} \in \mathbf{Y}^{\mathbf{x}} \left\{ \mathbf{D}_{\mathbf{x}}^{\mathbf{x}} \in \mathbf{Y}^{\mathbf{x}} \right\} \right] \left\{ \mathbf{y} \in \mathbf{Y}^{\mathbf{x}} \left\{ \mathbf{y} \in \mathbf{Y}^{\mathbf{x}} \right\} \right\}$ $[\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{x}}] = [\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{x}}] = [\mathbf{I}_{\mathbf{x}}, \mathbf{I}_{\mathbf{x}}] = [$ جه ، ه H ، , , وه ; D ، , وه ، ه و , Aa m ، , وه . ه م ه ، م و مه ا ه $\{$ $\{$ $\{$ $\{$ $\},$ $\{$ $\},$ $\{$ $\},$ $\{$ $\{$ $\},$ $\{$, $\{$ $\},$ $\{$, $\{$ $\},$ $\{$ $\},$ $\{$ $\},$ $\{$ $\},$ $\{$, $[\mathbf{u}_{\mathbf{u}}]_{\mathbf{u}} = [\mathbf{u}_{\mathbf{v}}, \mathbf{u}_{\mathbf{u}}]_{\mathbf{u}}, C_{\mathbf{u}} \in \mathbf{u}_{\mathbf{v}}, \mathbf{u}_{\mathbf{v}} \in \mathbf{H}$ L.

 $\begin{array}{c} \mathbf{A}_{\mathbf{1}} \bullet & \circ & \mathbf{1} \\ \mathbf{A}_{\mathbf{1}} \bullet & \circ & \mathbf{1} \\ \mathbf{A}_{\mathbf{2}} \bullet & \circ & \mathbf{1} \\ \mathbf{A}_{\mathbf{2}} \bullet & \mathbf{A}_{\mathbf{2}} \end{array} \right) \mathbf{A}_{\mathbf{2}} \bullet \mathbf{A}_{\mathbf{2}} \mathbf{$

 $\begin{array}{c} F_{x_1} & , & e_{x_2} & e_{x_1} & e_{x_2} & e_{x_2} & e_{x_3} & e_{x_3} & e_{x_4} & e_{x_5} \\ F_{x_1} & e_{x_2} & e_{x_3} & e_{x_4} & e_{x_5} & e_{x_5} & e_{x_5} & e_{x_5} & e_{x_5} & e_{x_5} \\ F_{x_1} & e_{x_2} & e_{x_3} & e_{x_5} \\ F_{x_1} & e_{x_2} & e_{x_3} & e_{x_5} \\ F_{x_1} & e_{x_2} & e_{x_3} & e_{x_5} & e_{x$

. **A** [1]

1, A. 11

ROBERT M. SOLOW

 $\left[\begin{array}{c} \bullet & \bullet \end{array} \right] \mathbf{x} \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \mathbf{x} \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \mathbf{x} \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \mathbf{x} \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \mathbf{x} \quad \left[\begin{array}{c} \bullet \\ \bullet \end{array} \right] \mathbf{x} \\ \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} \\ \mathbf{x}$] [* 6 * 6 *] * * * 4 6 * 2 * *] * * * *] * * *] * * *] * * * * *] * * * * * ાં ા ચ્યુ રુ ગ્યુ રૂ ગ ગ ર] ગ ્યુ ગ ન ચ ચ] પ્રાય ગ ર ચ્યુ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર ચ ગ ર $\bullet]_{\mathbf{6}} \cdot = \{\bullet\}_{X_{1}} \bullet \bullet \bullet \cdot]_{\mathbf{6}} = \bullet \bullet \bullet \bullet]_{\mathcal{C}} = \bullet_{\mathcal{C}} \bullet = \bullet_{X_{2}} \bullet \bullet \bullet_{\mathcal{A}}]_{\mathbf{6}} = \bullet [\bullet \circ \bullet \bullet_{\mathcal{C}}$ * • · { * • ~ ~ ~ ~ ~ ~] ~ • • • { •] ~ • • • ~ ~] ~ • * • · • ~ • ~ • ~] •] • • • ~ · • ~] •] • • • ~ • <u>} a</u> $\cdot \{\mathbf{0}\} \circ \mathbf{0} = \mathbf{0} \circ \mathbf{1} \circ \mathbf{1$ $[r_1 \mathcal{U}_{\mathcal{A}}, r/\mathcal{A}_{\mathcal{A}}] = [r_1 \mathcal{A}_{\mathcal{A}}, r_2 \mathcal{A}_{\mathcal{A}}] = [r_1 \mathcal{O}_{\mathcal{A}}, r_2 \mathcal{A}_{\mathcal{A}}, r_1 \mathcal{A}_{\mathcal{A}}, r_2 \mathcal{A}_{\mathcal{A}}, r_1 \mathcal{A}_{\mathcal{A}}, r_2 \mathcal{A}_{\mathcal{A}}, r_1 \mathcal{A}, r$ •°·]°] x•° 27 x ••• ••°)°° • v•¥ 2•• • 2×20• 22×0• 4] [* 32" = 34 = 2" * 4 + 1" *] * • 4] * • C* 2" * * * •] * • • • * * •] * ₹ 10] 221 10 ° 1 − 10 ° 10] 28 4 ~ 5 °] 27 4 10 + 10 + 2 − 1 − 4 ~ 6 1 2 2 4 ~ 6 ₹6 ₹40 - 27] ° 27, 20 · − 1 2 - 21 - 66 30] • 1⁷ ° 40 ₹ 200] 28 ° 30 - 21 1 -*·> * = * *1 * · * *] # 55*6*] # - * *100 · ~ *1 *1 * 50 *3

∗●] ● .

 $\begin{bmatrix} \mathbf{a} & \mathbf{a} & \mathbf{b} & \mathbf{b}$

] 🙀 Fa 👎 1998);] •] 📲 • a a ुr . G 📖 C. a . e . 🦉 . 🥵 $A_{i} = A_{i} = A_{i$ $\mathbf{1}_{\mathbf{x}_{0}} \in [\mathbf{1}, \mathbf{1}] \in [\mathbf{0}, \mathbf{1}] \in [\mathbf{0}, \mathbf{1}] \in [\mathbf{0}, \mathbf{1}] \in [\mathbf{1}, \mathbf{1}] \in [$ • \\$ * \$] \\$ \\$ \\$ \$ 0] • 1 \\$ \\$ \\$ 1 \\$ 0] • 1 \\$ \$ 0] \\$ 1 \\$ 0] \\$ 0 \\$ $\mathbf{1}_{\mathbf{1}_{\mathbf{0}}} \in [\mathbf{0}_{\mathbf{1}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}}] = [\mathbf{0}_{\mathbf{1}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{$ $\mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{e}_{\mathbf{2}} \mathbf{e}_{\mathbf{1}} \mathbf{e}$ $\sum_{\mathbf{x}} \langle \mathbf{x}^{*} \mathbf{x}^{*} \mathbf{x}^{*} \mathbf{x} \mathbf{x}^{*} \mathbf{x$] •16 •• 25 • •5 •= 20 24 2 • •61•] 02 1] 36] 05 4 1] 1 4 6 4 4 1 6 1 6 6 1 6 4 6 1 6 7 4 6 4 6 7 4 5 7 8 1 6 6 9 1 6

L_E • •

¹ x 1⁴ •] • x 3⁴ • ¹ 1 6 ⁴ 1 · · · x 3⁴ × • · · x 3⁶ • · · 5" 5 1] 3 3 4 3 · " 5 P 5] 3 · " " 6 3 5 · " 3 5 · 1] 3 4 5 4 5 5 · $\mathbf{A} \bullet \mathbf{y}_{\mathbf{X}} \mathbf{x} \bullet \mathbf{x}_{\mathbf{G}} \mathbf{$ -1 ₀ 1400 1.004]04 ≪06]0 144 ₀χ0,]₀χ4 0]00 1.14-21" 01 0] 0 0 , 1 26 52 1 20 2 24 02 2 1 a 00 25 4 0 100 $10] \chi^{\overline{b}}_{\overline{\mathbf{0}}} \chi^{\underline{a}}_{1} \cdot [0 , \pi]] 0 , 1 , \chi 0] 4 , 1 \cdot 0 1 + \chi 0 0 0 - \chi 0] 1 \cdot \chi^{\underline{a}}_{1} \cdot \chi^{\underline{a}}_{1}$

<u>,,</u>, (), <u>,</u>, (), (,), ~10 1 40 4 00 55] · 1 2 1 4 0 1 20 1 ~0 1 3] · · · · 0 6 6 0]6 •] 3200] 00 • 1 3 50 × 50 • 1 3 50 · 1 4 50 • 10 • •] × 2 • 4 • • •] • $[0] = \frac{1}{22} \left[-\frac{1}{22} \left[-\frac{1}{22} + \frac{1}{22} +$..., u...]... G. ... C. H. . E. ... $\mathbf{1}_{1} \mathbf{y}_{\mathbf{0}} = \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_{\mathbf{0}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_{\mathbf{0}} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_{\mathbf{0}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_{\mathbf{0}} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_{\mathbf{0}} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{\mathbf{0}} \\ \mathbf{y}_$ ▶ 1 3 0 3 () 1 3 1 0 0 3 3 1 0 0] w x16 0 1 c d 1 3 3 1] 6 1 3 3] 0 -22"] 7 • 44] • 202 • 6 • 1 0 6 0 • 0 • 0] 7 •] 0 6] • 0 2 4 2 4 1] • 0 1 $[\mathbf{x}_{\mathbf{a}}] = [\mathbf{a}_{\mathbf{a}} \bullet_{\mathbf{a}} \circ_{\mathbf{a}} \bullet_{\mathbf{a}} \bullet_{\mathbf{a}}$ $[\mathbf{e}_{\mathbf{f}}, \mathbf{e}_{\mathbf{f}}, \mathbf{$ $(\mathbf{F}_{\mathbf{v}},\mathbf{F$]0]60 A. 0 10 10 1 10 1 16 1 16 1 16 17 16 16 17 16 16 16 17 16 16 16 17 17 16 16 16 17 17 16 16 16 17 17 16 16 • 2 • 3 • 2 × • 1 3 • 2 • 1 4 • 6]•]6 • 1 • • • • • • • • 3 • • 3 • • 3 • • 3 • • 5 • \bullet 5 \bullet \bullet 5 of a 2201] as 1 200 a + 1] a] 210 1 - 22 0 24 0 2 2 1 1 - 22 22 2 2 4 0 61 - $\bullet \bullet \bullet \bullet \bullet_{10}]_{\circ} \downarrow \downarrow \bullet \bullet_{\circ} \bullet \neg_{\bullet} \bullet_{1} \circ \bullet_{1} \circ \bullet \bullet \bullet \bullet_{10} \bullet_{10}$] 1,1 0 100 6 52 0,200 4 1 2 0 1 3 0 6 0 1 00 1 2 1 1 10 1 20 3 $\begin{array}{c} \cdot \bullet \bullet \mathfrak{U}_{\mathbf{6}} \end{array}) \bullet \mathfrak{K} = \left[- \bullet \cdot \mathfrak{K}^{*} \right] \bullet \left] \mathfrak{e} \bullet - \mathfrak{K}^{*} \right] \cdot \mathfrak{g} \bullet \mathfrak{e} \cdot \mathfrak{h}^{*} \left] \cdot \mathfrak{g} \cdot \mathfrak{g} \cdot \mathfrak{g} \right] \cdot \mathfrak{g} \mathfrak{k}^{*} \left] \cdot \mathfrak{g} \bullet \mathfrak{g} \circ \mathfrak{g}$ ¹ , ¹

 $\begin{bmatrix} 1990, \circ & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 &$

 $\frac{1}{2} + \frac{1}{2} + \frac{1$

 $\begin{bmatrix} 0 & 0 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \cdot 4 \cdot 6 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 0 &$

 $[A_{\mathbf{x}}]_{\mathbf{x}} = \left[\begin{bmatrix} A_{\mathbf{x}} & A_{\mathbf{x}} & A_{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} A_{\mathbf{x$. ● .,] . ■ <u>,</u>* ■ ₀ ● .₀ .<u>,,</u>** () - **₩** • • .] • ■ ~ , <u>1</u>* ₀] ₀,¹ ,), ~,* ₀, ₀] ₀* ■ -] & 6 * 2° * [1 21' 21 1] 2 2 8 * 4 1 * 1° 0 " * 20 8 52 * 20 21' 02 $[\mathbf{0} \bullet \mathbf{H}_{\mathbf{1}}]_{\mathbf{1},\mathbf{2}} \mathbf{q} \bullet [\mathbf{0}, \mathbf{A} \bullet \mathbf{q}]_{\mathbf{1}} \mathbf{C} \mathbf{q}_{\mathbf{1}} \mathbf{q}_{\mathbf{2}} \mathbf{q}_{\mathbf{2}} \mathbf{e}_{\mathbf{1}}]_{\mathbf{1}} \mathbf{q}_{\mathbf{2}} \mathbf{q} \bullet \mathbf{1} \mathbf{q}_{\mathbf{2}} \mathbf{q} \bullet \mathbf{1} \mathbf{1} \mathbf{9} \mathbf{9}$ · x ·] ·]@ ●] · ¹@ ?@]* [●] @ ⁰ · · · ¹ ? ?] ● · ¹* ~ ~ <u>x</u> * ● · ¹ ~ ~ · ·] ~ @ ·•] <u>N</u>^A ON ON <u>S</u>^A A] A O A O] O B B • K•A SO] O] **6** A00 SO 6 A] • • AO, • • AO $]_{\mathbf{H}} \stackrel{\mathsf{ab}}{=} \underbrace{\mathsf{ab}}_{\mathbf{A}} \stackrel{\mathsf{ab}}{=} \underbrace{\mathsf{ab}$ •], •],] • •, • •, 1970] **1**986. A, B 1° 0] 4 ° 0 ° 0] °] A VE VEV V] 0 1~€ 0 ° 0 V]] € 0 °] € $1986_{\circ}]_{\circ}^{*}] \bullet]_{\bullet}^{*} \bullet {}_{\bullet}^{*}] \bullet , {}_{\bullet}^{*} \bullet {}_{\circ}^{*}]_{\circ}^{*} \bullet {}_{\bullet}^{*}] \cdot , {}_{\circ}^{*} \bullet 13.3 \bullet {}_{\circ}^{*} \bullet {}_{\circ}^{\circ}$ $(\mathbf{1}, \mathbf{0}]$ B $\mathbf{0}, \mathbf{1990}$: 518; $\mathbf{1} \cdot \mathbf{0}$ I). $\mathbf{0}$ $\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}$ 5. *** * (1992) * (1992) * (1992) * (1992) * (1989); H_{1} * (1989); H_{1} * $(1992); F_1, \dots, H_{\bullet,\bullet}] , \bullet, \bullet \bullet (1992); H_{\bullet,\bullet} (1995). F_1] , \bullet] , \bullet \bullet (1997); H_{\bullet,\bullet} (190); H_{$ 63, 83).

6. (1990: 36), (1990: 36), (1989), (1980), (19

 $\begin{bmatrix} J_{11} & J_{12} &$

 $\begin{array}{c} \bullet & \left[\begin{array}{c} \bullet & \left[\end{array}{c} & \left[\begin{array}{c} \bullet & \left[\begin{array}{c} \bullet & \left[\end{array}{c} & \left[\begin{array}{c} \bullet & \left[\begin{array}{c} \bullet & \left[\end{array}{c} & \left[\end{array}{c} & \left[\begin{array}{c} \bullet & \left[\end{array}{c} \end{array}{c} \\ \right]$

 $A \quad \mathbf{I}_{\mathbf{x}_{0}} \quad \mathbf{0} \quad$ $1990 \circ \mathsf{C}_{\mathbf{x}}^{\mathbf{x}} \circ \mathsf{C}_{\mathbf{x}}^{\mathbf{x}} \circ \mathsf{I}_{\mathbf{x}}^{\mathbf{x}} \circ$ 6 × 1 × 1 × 1 × 1 × 10] × 1 × 11 × 1 }] * 0 × 0 × 0] 0 × - 0 × 1] × × 1 10^{-1} $[\mathbf{A}]_{\mathbf{V}} [\mathbf{A}]_{\mathbf{V}} [\mathbf{A}]_{\mathbf{V}}$ ن •] ل ب] • • ₂₂ •] • ₂ • (• • • ₂ • ₂ • ₂ •) <u>1</u> • • حوا . A₁] • • با <u>م</u> $\bullet] \ , \ , \bullet \circ \] \ \bullet \ \bullet \ , \ , \bullet \bullet \circ \] \ \circ \ \bullet \ \circ \ \bullet \ , \ x_1 \bullet \circ \] \ \circ \ \bullet \ \circ \ \bullet \ x_1 \bullet \circ \] \ \circ \ \bullet \ \circ \$] =] 22 * 0 * 0] * 0 ~ 0 0 1] 22 2 * 1 1 0 • 10] • 6 * 0 * 8 $\mathbf{1}_{1} \mathbf{0}_{1} \mathbf{0}_{1} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf{1}_{2} \mathbf{0}_{2} \mathbf{1}_{2} \mathbf$ *1,0000<u>6</u>°<u>6</u> % 0 0] ° % * 10] 0 1 <u>* 9%1 %</u> * 6 1 ~ 6] °] % ° ° ~ 6 - 1~ $B_{0} = \left\{ \begin{array}{ccc} & & \\ & &$ $\chi_{2}^{(s)} \rightarrow \left[\chi_{2}^{(s)} - \chi_{2}^{(s)} + \eta_{2}^{(s)} - \chi_{2}^{(s)} + \eta_{2}^{(s)} + \eta_{2}^{(s)} - \eta_{2}^{(s)} + \eta_{2}^{(s)}$ \$ 15' 1 20 05 0 -2 0 0 1-2 1 20 1 -2 1 3 0 1 1 5 2 4 0 1] U] 0 1 6 5 -• • •]] • • •]]· • • • • A •] (• , • , • , •] • A • •] $[-1] \circ H_{1}] \circ [-1] \circ [-1]$ 200 0 0 0 1 00 200 0 m K

7. For [1, 2], [1, 2]

REFERENCES

 $A \bullet e_i A_i \bullet A_i \bullet A_i \bullet A_i \bullet e_i \bullet e_$. N 11 IN I . I S PP II , I. Bi \bullet_{χ} , Hi \bullet Bu •, , , , . G.) , (A, • ••]. 1989, • / / · · · 200°1, · · - · , // · // · 30 . 1 3, · · · - a , i - , e , a , i , i , . . , e , . , e , .]• , • ,• , D.C.. $[\mathbf{v}_{1},\mathbf{v}_{1}]_{\mathbf{v}_{1}} \bullet]_{\mathbf{v}_{2}} \bullet \mathbf{G}_{\mathbf{v}_{2}} \bullet \mathbf{E}_{\mathbf{v}_{2}} \bullet \mathbf{E}_{\mathbf{v}_{2}} \bullet \mathbf{G}_{\mathbf{v}_{1}} \bullet \mathbf{E}_{\mathbf{v}_{2}} \bullet \mathbf{G}_{\mathbf{v}_{1}} \bullet \mathbf{E}_{\mathbf{v}_{2}} \bullet \mathbf{G}_{\mathbf{v}_{2}} \bullet \mathbf{E}_{\mathbf{v}_{2}} \bullet \mathbf{E}_{\mathbf{v}_{2}}$,]]] . 13: A52. D.]] •, D. [•] • E] • F. 1998. n.n. , e. R. , , i. i d e. R. I . R population and the second second n , , , , , Bangan, : • E, , , Fag , , , , , , , • Α. F_{1} , H_{1} , H_{1} , D_{1} , H_{1} , D_{1} , H_{1} , H_{2} , D_{1} , H_{2} , H• $C_{\mathbf{1}_{20},\mathbf{1}_{20}}$ $C_{\mathbf{1}_{20}}$ $C_{\mathbf{1}_{20}}$ 42.48 (] 1] · [·] ·). $G_{1} \bullet_{3}, \bullet_{1}, \bullet_{1} \bullet_{2} \bullet_{2} \bullet_{1} A_{3} G_{\bullet} \bullet_{2} \bullet_{1} \bullet_$ E_{a} , e = a, e $G_{1} \otimes G_{1} \otimes G_{1$ $H_{\bullet,\bullet}$, $B_{\bullet,\bullet}$]. 1992. I_{\bullet}], I_{\bullet}], I_{\bullet} C] at I_{\bullet} : $F_{\bullet,\bullet}$, I_{\bullet} ~ι , ι Α. 1990', υ. ι. - - D. . . . Ci, 101. ., 101: 34, 60. , IIO: 40, 48. $= E_{x} + (x + y) = (x + (y + y)) = E_{x} + (y + (y$., 87: 30, 43. ુ• E**્ર** ટ્રા.

JOHN D'ARMS

 $\begin{bmatrix} I_{x,0} & -\frac{\pi}{2} & \frac{\pi}{2} &$

•] *• [• • [• • [• * [• 55] • • [• 5] • 5 $C_{\mathbf{1}_{1}_{2}_{2}_{2}_{3}} \mathbf{1}_{\mathbf{1}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{0}_{\mathbf{0}_{\mathbf{0}}} \mathbf{0}_{\mathbf{0}} \mathbf{0}_{\mathbf{0}} \mathbf{0}_{\mathbf{0}} \mathbf{0}_{\mathbf{0}} \mathbf{0}_{\mathbf{0}}$ • 1. • , Ca, + 0. 1 , 0, x 3 , 0 100] + 1 , 1 ~ 0] 1 0 1 - χ_{1}^{*} , Λ_{∞} , η neh χ_{1985} , η_{0} , η_{0} , η_{0} neh η_{1} • <u>1</u>, • • <u>1</u>, $\mathbf{h}_{\mathbf{0}} \bullet \bullet \bullet \mathbf{U}_{\mathbf{1}_{\mathbf{0}}} \bullet \bullet \mathbf{I}_{\mathbf{1}_{\mathbf{0}}} \mathbf{I}_{\mathbf{1}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0}}} \mathbf{I}_{\mathbf{0}} \mathbf{I}_{\mathbf{0$. A] 9 0 19 A . Ca , 2 0 A . 0 , 3 1 , 3 1 % 00 , 6 1 , 0 . 16 0 1] 3 x 2 x 4 + 0 + 0 x] x 16 +] 6 + x + 0 0 x 1 x + 50 + • • .-O. • . . • •

 $\begin{array}{c} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{y}_{1} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}$

 $\begin{array}{c} A_{0} \bullet * \left[e_{1} \right] \bullet \bullet \bullet \bullet & e_{1} & e_{2} & e_{3} & e_{4} & e_{4} & e_{5} \right] \bullet \\ \bullet \bullet \bullet & e_{1} & e_{1} \bullet \bullet \bullet & e_{1} \\ \bullet \bullet & e_{1} & e_{1} \bullet & e_{4} & e_{5} & e_{5} & e_{5} & e_{1} & e_{1} & e_{2} & e_{5} & e_{1} \\ \hline B_{1} & \bullet & e_{1} & \bullet & e_{4} & e_{5} & e_{1} & e_{5} & e_{5} & e_{5} & e_{5} & e_{5} & e_{5} \\ \hline B_{1} & \bullet & e_{1} & \bullet & e_{4} & e_{5} & e_{1} & e_{5} \\ \hline B_{1} & \bullet & e_{1} & e_{1} & e_{1} & e_{1} & e_{1} & e_{5} \\ \hline B_{1} & \bullet & e_{1} & e_{$

$$\begin{split} & \text{Is} \mathbf{1}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{0}_{\mathbf{0}} \quad \mathbf{1}_{\mathbf{0}} \text{IS} \mathbf{0} \mathbf{0}_{\mathbf{0}} \mathbf{1}_{\mathbf{0}} \mathbf{1}_$$

- 2.] oneh. $\sum_{x=1}^{n} \left[\frac{1}{2} + \frac{1}{2}$

 $\begin{array}{c} E_{1} & \bullet & \bullet_{1} & \bullet_{2} & \bullet_{2} & \bullet_{2} & \bullet_{3} & \bullet_$

 $\begin{array}{c} J_{1} \quad \vec{k} & \dots & \mathcal{X}_{1} \quad \vec{x} = 0 \quad \vec{k} \left[\left[\alpha^{2} + \alpha^{2} \right] \left[\alpha^{2}$

] °°6 x] x x00 °0 x 1 °°6 • 1 ° 0 °° °°1 x0 8 °700] A 0 7, 700 77, 1 A 0 -] * *** * *] · ** * * * ; * * *_{6 1}*] ₂* * * * * *^{*} * * * * * *] 286 5] 76 27 · • • • • • • • • • •] •] 54 • • • 4 2040 % • • • • • ° • • • • • •] • • • • ² • • ²⁷ • • ²⁷ • • • • • • ²⁷ • • ² • ² • ² • • • •] • ·] •] -ۥ ¥ •ו]•]4 €•@ ∳ •²°² •ו]• €•@ ∲ •²° 27 22€1₄° • $[\mathbf{x} \bullet \mathbf{y} \to \mathbf{x} \bullet \mathbf{y} \bullet \mathbf{h} \bullet$ • _{૨૦} ત_{.24}] ુર્વ. D] ગું ત. મ₄ લ] તમ ત. મ. ગું પ્રુથલ ન્દ્ર મે. ને મન્દ્ર તત્વ. ગું તમારુ – ● ુર્ષ] ન થવે ન રાજ્ય થયે ન રહે થયે રુજી વિજ્ય રુજી ન ગો થયે છે] ન $[\mathbf{0}] \bullet \bullet \mathbf{1} \bullet \mathbf{2} \bullet \mathbf{2} \bullet \mathbf{1} \bullet \mathbf{2} \bullet \mathbf{1} \bullet \mathbf{1$ $\left\{ \mathbf{A}^{\mathbf{0}} \left\{ \begin{array}{c} \mathbf{F} & \mathbf{I}_{\left[\mathbf{0}\right]} \mathbf{A} \cdot \mathbf{E}_{\mathbf{1}}^{\mathbf{1}} \left[\mathbf{0} & \mathbf{I} + \mathbf{0} \right] \mathbf{A}^{\mathbf{0}} \mathbf{A}^{\mathbf{0}} \mathbf{A}^{\mathbf{0}} \right\} \right\} = \left\{ \mathbf{A}^{\mathbf{0}} \left\{ \mathbf{A}^{\mathbf{0}} \cdot \mathbf{E}_{\mathbf{0}}^{\mathbf{0}} \right\} = \left\{ \mathbf{A}^{\mathbf{0}} \cdot \mathbf{A}^{\mathbf{0}} \mathbf{A}^{\mathbf{0}} \right\} = \left\{ \mathbf{A}^{\mathbf{0}} \cdot \mathbf{A}^{\mathbf{0}} \mathbf{A}^{\mathbf{$]] \ 10 ~ 2 ~ ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 2 ~ 0 ~ 2 ~ 0 ~ 2 ~ 1]

CALVIN C. JONES

OVERVIEW

 $\begin{array}{c} \circ & \mathbf{z}_{\mathbf{v}} \\ \circ & \mathbf{z}_{\mathbf{v}} \\ \circ & \mathbf{z}_{\mathbf{v}} & \mathbf{z}_{\mathbf{v}} & \mathbf{z}_{\mathbf{v}} \\ \cdot & \mathbf{z}_{\mathbf{v}} & \mathbf{z}_{\mathbf{v}} & \mathbf{z}_{\mathbf{v}} & \mathbf{z}_{\mathbf{v}} \\ \cdot & \mathbf{z}_{$

 $\begin{array}{c} A & e & e \\ A & e & e \\$

 $\begin{array}{c} G_{1} \bullet_{0} \bullet_{1} & \ddots & \ddots & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

 $\begin{array}{c} 2. D_{\mathbf{h}_{1}} \cdot \left[1 \cdot D_{\mathbf{h}_{1}} \right] \cdot \left[1 \cdot \mathbf{h}_{1} \cdot \mathbf{h}_{2} \cdot \mathbf{h}_{1} \cdot \mathbf{h}_{2} \cdot \mathbf{h}_{2}$
REPORT CONTENTS

THE STATE OF THE ART IN HUMANITIES POLICY RESEARCH

\$\x^2, \begin{aligned}
\$\x^2, \begi

2. A so the set of [0, 0] =

ÿ x1x6+x+++ (0 x]+ +++] 1 3xx2x x2 6x++ €] +]1x++×5 M.N.O. M., 1] 3 2 2 4 6] J 0] 0 3 0 46 9 1 1 L L] 3 0 9 1 1 - L] 3 0 9 1 1 - L] 3 0 9 1 - L] 3 1 - L

•*1 3.

 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1$

 $\frac{\partial e_{x_0}}{\partial e_{x_0}} = \frac{\partial e_{x_0}}{\partial$

 $= -\frac{1}{2} + \frac{1}{2} +$ •]• મન્દ]દ• ર] ૭ €] ગું યાય છે. યન્દા ● માર્ટ્યો ગું યાર્ટ્ય મન્દ્ર • ર] રંજ્ર્ફ્ય 6 10 × 2 × 0 × 1 × 3 × 1 × 2 × × × × × 0 × 1 × × 1 × × 1 × × 1 × × 1 = ، ج¹ ج¹] ۲ •] • ، ج¹ ج¹ + ، • ¹] • •] ۲] ج] • ³ •]] • ج • ج ج<u>ا</u> • • · ج • • • • + ج $\left[\left[\left[\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\right]+\left[\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right)\right]+\left[\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right)\right]+\left[\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right)\right]+\left[\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right)+\left(\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right]+\left(\left(\left(\frac{1}{2},\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right),\frac{1}{2}\right)$ الو [٢٠ [٢٠ [٢٠] ٢٠ [٢٠] ٢٠ [٢٠] ٢٠ [٢٠] ٢٠ [٢٠] ٢٠ [٢٠] ٢٠ [٢٠] • "6100 ",]" • " 1 06 32" 2 35 [] 20 • U * " 4610 [] 32" 2 " 2 0 " 20] 36 ,] # 201 24 20 20 1 - 0]4 0 0 20 1 2 0 10 0 1 10 20 10 0 0] 0 200 - 0 ° πα – π καα ° π α π κ ²⁷α ° ανα^θ ၨΦ]] α αν π⁷ ααν ²⁷α] α π α ²° π α γ 40 8 200] M 0 2, 200 22, € 20 0 200 206 10 10 22, ° 0 4 14 0 1 1-20]] 1] 2 8 4 4 4 6 4] 0] 6 4 4 4 4 9 4 . EQ 2 2 0 4 4 4 50] 8 4 2 8 20 2 8 6 4 -

1 = ¹] 3 · ·
1 = ¹ · ·</

I, y = == , = = , =] , =] , =] , = [= Ca, y = A Ca y = = A Ca y = A Ca

SECTION 1. PRELIMINARY RESULTS: COMPARING THE HUMAN-ITIES TO THE ARTS AND SCIENCES

 $\begin{array}{c} D_{1} = \left[\frac{1}{2} + \left[\frac{1}{2} + \frac{1}$

6. D]] •] • F• • • 1998. 7. I • .

د به در به دون در این دون در به دون به دون در به دون د در به دون در ب دون در به دون در ب دون در به دو د دون در به دو در در به دو در به دو در به دو در به دو در به

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

А

••

SECTION 2. PROPERTIES OF DATA RESOURCES LISTED IN THE INDEX OF HUMANITIES DATASETS

FUNCTIONAL CLASSIFICATION

EXHIBIT 1: COUNTS OF DATA RESOURCES BY FUNCTIONAL CLASSIFICATION

type of resource	count	
bibliographic materials	35	
directories and catalogs	36	
research datasets	34	
publications and reports	3	
total	108	

 $I. \quad [r_1 - a_1, r_1 - a_2, r_2] = [r_1 - a_2, r_2] = [r_1 - a_2, r_2] = [r_1 - a_2, r_2] = [r_2 - a_2, r_$

•••]••]]·

Ard of J. 9. , Jonn + 0] + 1 J. 0 20 01 . 140 10 0 6] 1 2021 1. x] 0 0 x 2 + 0 1 0 4] x 2 0 30] 0 2 0 - 2] 4 0 0 0 2 2 2 0 0 2] 4 1 1 4 કુક જેવર મળ્યાં *ગ*ેલીક માંદેવર કરે કે] પૈતા મળ્યે કાળ કે માંદેવ } કે ડ] રુઝ્રી ગ્યું થાયો ગ્યું થ્]ો રી પ્રાયં થ≪ે શ્રાચ્ચે રેલ રેલ પાલ થા≪ે શાળવા પ્ર $[\mathbf{A}] = [\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$ $[\mathbf{0}, \mathbf{1}_{\mathbf{0}} \mathbf{A} + \mathbf{1}_{\mathbf{0}} \mathbf{0} + \mathbf{1}_{\mathbf{3}} \mathbf{0} + \mathbf{1}_{\mathbf{4}_{\mathbf{0}}} \mathbf{0} + \mathbf{1}_{\mathbf{1}_{\mathbf{0}}} \mathbf{0} + \mathbf{1}_{\mathbf{0}_{\mathbf{0}}} \mathbf{0} + \mathbf{1}$ -28 6 (0) 46 444 5.06 4 5.0 1 · · ³ 4 10] · 4 15 4 5] 56 1 5 4 4 5] 4 -

 $\begin{array}{c} \bullet & \int_{X_{2}X_{1}} e \, 19 \, \bullet \bullet \bullet_{1} \, \bullet \bullet_{2} \, \bullet_{1} \, \bullet_{2} \, \bullet_{2} \, \bullet_{1} \, \bullet_{1} \, \bullet_{2} \, \bullet_{2} \, \bullet_{1} \, \bullet_{1} \, \bullet_{2} \, \bullet_{2} \, \bullet_{2} \, \bullet_{1} \, \bullet_{1} \, \bullet_{2} \, \bullet_{2$

EXHIBIT 4: COUNTS OF DIRECTORY AND CATALOG DATA RESOURCES BY Type

directories and catalogs	count
academic institutions (departments,	20
programs, presses, etc.)	
funding sources	10
humanities organizations (primarily	4
non-academic)	
individual humanities practitioners	2
(philosophers)	
total	36

EXHIBIT 5: DIRECTORIES AND CATALOGS (36)

```
G E/CG D_{0}, a_{c} G_{1}, b_{c} a_{c} D_{c}
                                                            we and the lose of the
                          • • • • • • C • • • D ] • ] • ] •
                          • • • • • • G] ....
      A A G \bullet \bullet G_{\bullet} G_{\bullet} \bullet G_{\bullet}
      D_{\bullet} ] = \bullet_{\lambda} ] A_{\bullet} = [ [ \bullet_{\lambda} ] ] \bullet_{\lambda} ] \bullet_{\lambda} \bullet_{\lambda} \bullet_{\lambda} \bullet_{\lambda} \bullet_{\lambda} \bullet_{\lambda} \bullet_{\lambda} ] \bullet_{\lambda} \bullet_{\lambda} ] \bullet_{\lambda} \bullet_{\lambda} ] \bullet_{\lambda} \bullet_{\lambda
      A • •]
      D_{0}, A_{\alpha}, A
      D_{\mathbf{v}} \bullet_{\mathbf{v}} \bullet
      D_{10} = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [1, 1] = [
      Du_{0} = \left[ \begin{array}{ccc} \mathbf{a} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x}
      Fige 'in the AD, the integration of the second seco
                          • ] .• •
      G_{0} A_{0} H_{0} A_{0} H_{0} A_{0} A_{0} A_{0}
      G_{\mathbf{a}} \circ \mathcal{A} = E_{\mathbf{a}} \circ \mathcal{A} \circ \mathcal{A} \circ \mathcal{A}
      G_{\mathbf{c}} \bullet G_{\mathbf{c}} = G_{\mathbf{c}} = G_{\mathbf{c}} = \mathbf{D} \bullet \mathbf{c} \bullet \mathbf{c} \bullet \mathbf{c} = \mathbf{c} \bullet \mathbf{c} 
      G_{\mathbf{A}} \bullet \mathfrak{a} \bullet \mathfrak{a
                    , , , , , , , , , , (IO)
      A, 1) + ( , + + G], + (+ + + )
      A ] • A ] ]•
      C_{\bullet} \bullet \uparrow \bullet 500, C_{\bullet} \bullet \uparrow \bullet, J_{\bullet} \bullet \bullet.
      D_{\mathsf{v}} \circ \mathsf{v} \circ \mathsf{H}_{\mathsf{v}} \circ \mathsf{H}_{\mathsf{v}
      Find Die .
      F_{1, \alpha} G_{1, \beta} I_{\alpha}
      G. A A
      G1., 1, Da
                                                     \mathbf{I}_{\mathbf{q}} = \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{A}_{\mathbf{q}} \mathbf{I}_{\mathbf{q}} \mathbf{I}_{\mathbf{q}} = \mathbf{D}_{\mathbf{x}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{q}} \mathbf{I}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I}_{\mathbf{q}}} \mathbf{I}_{\mathbf{x}_{\mathbf{q}}} \mathbf{I
                                                     15 00 1,4 C 1 10
                                 1°. °, ', MAI., SA, A., (4)
      A • • , A , D , • • • •
      A • • • · · · D. • · · ·
      D_{\mathbf{x}} \bullet_{\mathbf{y}} \bullet_{\mathbf{x}} \bullet
```

• ,••• • • • • • ,•] , E] , D,•• ,• . 1998 1999

 $\begin{array}{c} \mathbf{1} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{E} \quad \mathbf{1} \quad \mathbf{K} \quad \mathbf{G} \quad \mathbf{E}/\mathbf{CG} \quad \mathbf{1} \quad \mathbf{K} \quad \mathbf{K$

 $[A_{x} \bullet_{a} \bullet_{a} \bullet_{a} \bullet_{b} \bullet_{a} \bullet_{b} \bullet_{b} \bullet_{a} \bullet_{b} \bullet_{a} \bullet_{c}]_{\mathcal{A}} \circ_{\mathcal{A}} \bullet_{\mathcal{A}} \bullet$ $\{[v_1, v_1, v_2] \in [v_1, v_2] : v_1 \in [v_1, v_2] : v_1 \in [v_1, v_2] : v_2 : v$ $\bullet \bullet \ x_{0} \bullet (x_{1}, x_{2}, \bullet) \bullet \ (\phi \bullet) \bullet \ (x_{2}, \phi) \bullet \ (\phi \bullet) \bullet (\phi \bullet) \bullet$ المحمد من الموادية في المحمد ડ] ક]ની કાર્યવક મજી તથા ન છે જે જેવા કી થીવી વે જે કરક કે કી રી તે જે જે કરક કે કી વી તે જે જે જે જે જે જે જે જ ~ **1** نه ۹۰ تا ۲<u>۲۵ م</u> ۲۹ (۲۹ ۲۹ تو ۲۹ ۲۹ تو ۲۹ ۲۹ تو ۲۹ ۲۹ تا ۲۹ تو ۲۹ ۲۹ ۲۹ ۲۹ تو ۲۹ ۲۹ $\mathbb{E}_{\mathbf{y}} \circ \mathbb{I}_{\mathbf{x}_{0}} \circ \mathbb{I}_{\mathbf{x}_{0}$ € 10x 2101 1 20x 1 20x 1 3x 1x0 1x0]0]€0 \$ 2x 024 02 x6 200 1 4x .

12,000 Jac & Later Jost 10,000 Jac & State 10,000 Jac 12,000 Jac 1 Jac 1 10,000 Jac

····] ·] · ·] · · ·

 $\{ \langle 0 \rangle \stackrel{(4)}{=} X_{2}^{0} \stackrel{(4)}{=} X_{2}^$

·M, , , M, / / ,] U, J, • • • , • • , <u>x</u>• , , M, / - // • , •] U, J, • ∎, CD-·] 및 및· • • ᢏ• ᢏ • 및• • 설 ᆾ • ...• # CD- $(\mathcal{M}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{M}_{1}, \mathcal{A}_{2}, \mathcal{A}_{2$ 1 5] 97 x 1 x 9 (\$ 1.5° 0 0 x 36x 6x 3 x 68 x 98 x 98 x 95° 0 x 15° 0 x Casta 10.20, 20 a tao and an at an an anal a and a a 20 યો રેટ્રે 27.6 માં કરે મ≮ેટ કરે કો શાક સ્લી ગેરાક કરે છે. કે ચ્યા ચાયલે ચ્યે ક્વેય સંસ્વેય $\circ_X \bullet \pi \bullet \chi \bullet \bullet \bullet \circ_X \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ_{\mathcal{C}} \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \bullet \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ \circ_{\mathcal{C}} \circ$

 $\begin{array}{c} x & y \\ x & y \\ y & y \\ z & y$

 $\begin{array}{c} G_{0} \left[\left\{ x_{2}, x_{1}, x_{2}, x_{3}, x_{3} \right\} \right]_{0} \left[\left\{ x_{1}, x_{2}, x_{3}, x_{3}, x_{3} \right\} \right]_{0} \left[\left\{ x_{1}, x_{2}, x_{3}, x_{3} \right\} \right]_{0} \left[\left\{ x_{3}, x_{3} \right\} \right]_{0} \left[\left\{ x_{3}, x_{3}, x_{3} \right\} \right]_{0} \left[\left\{ x_$

 $\begin{array}{c} \mathbf{x}_{xx} = \mathbf{x}_{x} = \mathbf{$

 $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 &$

. IN . I N.N. /

 $\{ \mathbf{x}_{1}, \mathbf{c}_{1} \} = \{ \mathbf{y}_{1}, \mathbf{c}_{2}, \mathbf{x}_{2}, \mathbf{c}_{2} \} = \{ \mathbf{y}_{1}, \mathbf{c}_{1} \} = \{ \mathbf{y}_{1}, \mathbf{c}_{2} \} = \{ \mathbf{y}_{2}, \mathbf{c}_{2} \}$

 $[]]] \bullet (\bullet \bullet \bullet)7(\bullet (\bullet \times \times \bullet \circ)7(\bullet))6(\times 3 \bullet (\bullet \times \times \bullet \circ)7(\bullet)) 6(\times 3 \bullet (\bullet \times \bullet))7(\bullet)) 6(\times 3 \bullet (\bullet \times))7(\bullet)) 6(\times 3 \bullet))7(\bullet)$

 $\begin{array}{c} A * * & \sum_{X} E & \sum_{Y} 6_{22} & 34 & 44 \\ \cdot & \sum_{X} (E + \sum_{Y} 6_{22} & 34 & 4$

 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱
 ۱

EXHIBIT 6: COUNTS OF RESEARCH DATA RESOURCES BY TYPE

RESEARCH DATASETS IN THE INDEX OF HUMANITIES DATASETS

research datasets	count
academic institutions (schools, departments	
and programs)	
libraries and museums	7
samples of postsecondary faculty	5
samples of postsecondary students	7
samples of administrative records of	
postsecondary students	
samples that include postsecondary students	
samples of ph.d. recipients	2
total	34

EXHIBIT 7: SORTED BY TYPE

```
MI., 1., ., .(S)
] . . . . . G] . ] . A. . . . .
•••]• -Du,•]• ••] • ....• ....•
I ED' Ca . . . . . . . .
G IN GONG LI GER
• 1 a . (7)
1 • • • ] • ] J . • . ] . • • ]
A A, , ] ]] . , .
A Jacon
A]. . . . . . . .
 1", F<sub>x</sub>], ] I<sub>x</sub>, ] ..., ...
"M., 1, 1, 1, 1 M. M. M. (5)
 A = GC F. . . . . . . . .
 Jost J ' Mar . 1. Hay an and 1. Bay .
A . . . . . . . . . . . .
"M., I., I.I MI, ... (7)
AA A/AG I DI . DI I E I J . .
Booll olola B. ... .. Me sl'Me sl'
Brann Hannal . Me solar.
CG/G E^{1} U. I_{G}G_{I} U. I_{G}G_{I}
```

```
IIE \mathbf{e} + \mathbf{g} + \mathbf{g} + \mathbf{h} + \mathbf{h
```

Nr. , here 1

 $\begin{array}{c} \mathbf{M}_{11} \quad \mathbf{M}_{12} \quad \mathbf{M}_{13} \quad \mathbf{M}_{14} \quad$

]] 6 ° 6 · · 0 = 14 300 = 36] · 23 ° 24 ° 24 ° 24] 36 ° 0 •]] 0 9 ° 3 ° 54 = 7° ° 140 6 * * * * (1 * 1 * * U] y ~ 2 (), 0 6 *) 0 * 1 * 1 * 2 * 1 * 0 * 1 y 0 * 1 $x_{4} + x_{4}$]]] a^{aaa} (a^{a} , $b^{a} \neq x_{2} + x_{3}$). $D_{a} = a^{a} + a^{a} + x_{3} + x_{4}$ 1] 1 2 4 4 4 6 1 3] • • 16 16 16 18 1 0] 36 • 3 2 1 4 55 1 0 C] 14 56 3 3 4 5 1 5 $\mathbb{E}_{\mathbf{G}} \circ \mathbb{E}_{\mathbf{G}} \circ$ المان المحرفة (ما المراجع) • ما المراجع التي التي التي التي المن المان المراجع المراجع المراجع الم

81-1.4 (*** ***)) 7 (**) * (** *** *** *** *** **) 1996. 973 (**) . **.) 8 **.) . (*** ***) . (***

· par a · · · ·

LIBRARY DATASETS

• $\xi] [\mathbf{x}] \mathbf{x}$ $\{\mathbf{v}_{1} \ \mathbf{v}_{2} \ \mathbf{v}_{3} \ \mathbf{v}_{4} \ \mathbf{v}_{5} \ \mathbf{v}_{5} \ \mathbf{v}_{6} \ \mathbf{v}_{7} \ \mathbf{v}_{7$

] 🙀 🗖 🖣 👌 🙀 (AC), ų] a. a. g. 🖬 🛫 ų 5. 5.] a. 1979] + + + 2022 + + + + 1 + 0 + + + + 2002 + . + + 1 + + + + + + + +] 022 + [] o] ~1 10 105] . () $C_{J} = C_{J} = C_{J$, #, /, /, /,] *** * ,] *] * * * ,] ** * * I,064]*]** * * [, 064]*]* $\mathbf{1}_{10}, \mathbf{1}_{0}, \mathbf{1}_{1}, \mathbf{0}, \mathbf{0}_{10}$ $\bullet \bullet \ \underline{x} \bullet \underline{x} \bullet \underline{x} \bullet \underline{x} \bullet \underline{x} \bullet \underline{x} = \underline{x} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0$ $(\mathbf{1}_{\circ},\mathbf{0}_{\circ},\mathbf{1}_{\circ},$

9 (~ M ~ / M, ~ , / M ~ , /) = • * * 30 0 + • + 5]] 3 * • • •] • 0 • 5 5 5 1 9

 $\begin{array}{c} D_{j,j-1} & \sum_{i=1}^{j} \sum_{i=1}^{j}$

MUSEUM DATASETS
$\begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf$

 $\begin{array}{c} \mathbf{v}_{\mathbf{0}} & \mathbf{v}_{\mathbf{$

 $x_{0} \bullet C_{1} \bullet \bullet]_{0} = I_{1} \bullet [x_{0} \bullet x_{0} \bullet x_{0}] \bullet \bullet \bullet] \bullet \bullet [\bullet (x_{0} \bullet x_{0} \bullet x_{0}) \bullet \bullet (x_{0} \bullet x_{0}) \bullet \bullet (x_{0} \bullet x_{0}) \bullet (x_{0} \bullet x_{0}$ $\chi_{1}^{a} \circ \chi_{1} \circ \chi_{1}^{a} \gamma_{1}$, $\chi_{1} \circ \kappa_{1}^{a} = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0 \cdot A = 1 \cdot \left[\cdot \chi_{\chi} \cdot A \right] = 0$]•••] ₅₅ •• ••(•1, •5,•6]] ~• • 6]] • •61,•• •] U *• •]] ۲۰، ۲۰۰۰ ماری ۲۰۰۰ ماری ۲۰۰۰ ماری ۲۰۰۰ ماری ۲۰۰۰ (CE $\left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ \left\{ x_{0} \right\}^{n} \right\} \right] = \left[\left\{ x_{0} \right\}^{n} = \left[\left\{ x_{0} \right\}^{n} \right] = \left[\left\{ x_{0} \right\}^{n} = \left[\left\{ x_{0} \right\}^{n} \right] = \left[\left\{ x_{0} \right\}^{n} = \left[\left\{ x_{0} \right\}^{n} = \left[\left\{ x_{0} \right\}^{n} \right] = \left[\left\{ x_{0} \right\}^{n} =$ ⁴ [0·4] 0]⁶0] ¹₁¹ 0 0 ² · ⁰1 0 40] 0 0 4] ⁰0 0]· 0] ⁰X¹ X⁴ ⁰X ⁰2 ⁴ · ⁴

No 1 1 1 1 1 1 1 1 1 1 1

 $\begin{array}{c} \mathbf{H}_{X}^{*} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} \right\} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} \right\} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} \right\} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} \right\} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} + \mathbf{H}_{X}^{*} \right\} = \left\{ \mathbf{H}_{X}^{*} \left\{ \mathbf{H}_{X}^{*} + \mathbf$

 $\begin{array}{c} A_{0} & \mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{3} & \mathbf{i}_{3} & \mathbf{i}_{4} & \mathbf{i}_{5} & \mathbf{i}_{5$

]· · * { · *] 30 } 2 2 3 4 6 6 1 30 •] * 6 4 6 3 6 8 32 32 * 0] 0 2 5 7 5 • • • • • $\mathbf{M} \circ \mathbf{M} \circ$ [−] = [−] 0 \$ \$ 1 0 0 0 0 0 0 0 0 1 3 4 \$ 0 30 · 32 0 2 0 40 \$ 1 0] 4 0 0 303 0 0 0 0 30] 10 $\mathbf{1}_{\mathbf{x}_{0}} \bullet \mathbf{x}_{1}^{\mathbf{x}_{0}} \mathbf{x}_{0} \mathbf{x}_{1}^{\mathbf{x}_{0}} \bullet \mathbf{x}_{0}^{\mathbf{x}_{0}} \bullet \mathbf{x}_{1}^{\mathbf{x}_{0}} \bullet \mathbf{x}_{1}^{\mathbf{x}_{0$ - χω⁰ - χω⁴ -] ο χ⁴ , ζ] U ,] · •] · • [ο [] • • • ο χ⁴ , •] • ο χ⁴ , ⁴θ · · •] ο χ - ζ

• *• *]•1] • * > 20 16 22 * • * •] •] • *** * 04 • 20] [* 22 26 56 • 20 *]61] @a b b 20] 22a b 2 · 14 a 0 b 10 I,000b] aba b b] 206 6 * 00a 22] 2. $1 \quad] \quad \mathbf{x}_{\mathbf{x}} \notin \mathbf{x}_{\mathbf{x}} \bullet \mathbf{x}_{$ $] \mathbf{A} \bullet \mathbf{A}$]· 1, 125 ... 125 ... 10 ... 125 ... 10 ... - • • • •] @ **6** • * • • 32 − 21 • 16 • • 1 − • 2 21 2. − 1 • 1 @ 3] • 1_{≪0} • × • • $1_{10} \sim 1_{10} (1997) 1_{10} 1_{10} 2_{5} = 1_{10} 1_{10} 1_{10} 1_{10} 2_{5} = 1_{10} 1_{10} 1_{10} 1_{10} 2_{5} = 1_{10} 1_$ $x_{1} + (1)^{1} = (1 + 1 + 1 + 1 + 1)^{1} + (1 + 1 + 1 + 1)^{1} = (1 + 1)^{1} + (1 +$ * 10 x + x] x 500] = + x + + = x = + x + + = x] x x] x + 1] x x] x ▲에로 · ›이 성] /4 시 이상 시 중]이시 이] * ●] 이상 · · · · · ● 중] 이 ~ ● ● 호· · · · · ● $\mathbf{1}_{\mathbf{x}} \bullet \mathbf{1}_{\mathbf{x}} \mathbf{1}_{\mathbf{x}} \bullet \mathbf{$]·• ٥، ٩ • • ٨,]٥ • CE ٥ • • « ٤ • ٩ • ٥ • ٩ • ٩ • ٩ • ٩ $B\&B_{\mathcal{A}} \bullet \mathfrak{g}_{\mathfrak{G}}] \stackrel{\mathfrak{g}_{\mathfrak{G}}}{\longrightarrow} \mathfrak{g}_{\mathfrak{G}} \bullet \mathfrak{g}_{\mathfrak{G}} \mathfrak{g}_{\mathfrak{G}} \bullet \mathfrak{g}_{\mathfrak{G}} \mathfrak{\mathfrak{g}} \mathfrak{g}_{\mathfrak{G}} \mathfrak{g}_{\mathfrak{G$ مَعْرَفَةُ أَنَّهُ الْمَعْدِينَ مَعْدَةً مَعْدَةً عَمَانَ مَعْدَةً عَمَانَ مَعْدَةً عَمَانَ مَعْدَةً مُعْمَانًا م

 $= \{ \mathbf{e}^{\mathbf{i}} \mid \mathbf{h}_{\mathbf{x}}^{\mathbf{i}} \circ_{\mathbf{M}} \mathbf{e}^{\mathbf{i}} \cdot \cdot \overset{\mathbf{H}_{\mathbf{i}}}{=} \mathbf{0} \mid \mathbf{0} \mid \mathbf{0} : \mathbf{0} \mid \mathbf{1} \mid \mathbf{1} \cdot \mathbf{0} \cdot \mathbf{1} = \mathbf{0} \cdot \mathbf{0} \circ_{\mathbf{0}} \mathbf{1} \overset{\mathbf{i}}{=} \mathbf{0} \mid \mathbf{$ € {° € x2° Λ] * * *]• * * [• * * *E* x2° * * *]€ ~₹ € * · ¹ x* 2 x4 2 x4 2 *] *]]• Ø ≮2 ₹4]•]•] •] <u>22</u>] <u>26</u> <u>22</u> • • • []] • • • • • • • • • <u>10</u> • <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>10</u>] • • • • • • •] x] x 6 x] • 1 5 4 9 5 ~ 2] • 1 10 x * • • 5 1 ~ • • 1 *] · • • • 1 5 •], 10 10 0 0 0] 1. Bo], 10 0 1 055 1. 20, 1 0 50] 56 6 1 0 6] 0] 4 € 1 4 1 4 · · · · 1] € ~4 € · f 10 1~ · 4 €] 0] 01 1 1 0 ~4 0 1 € · 010] 0 · 3 0 0 $(1)_{\Sigma\Sigma} \{ \mathbf{x} \in \mathbf{x$ $\mathcal{M}_{\mathcal{A}} \neq \mathcal{M}_{\mathcal{A}} \neq \mathcal{M}_{\mathcal{A}} \neq \mathcal{M}_{\mathcal{A}} \neq \mathcal{M}_{\mathcal{A}} = \mathcal{M}_{\mathcal{A}} =$ $\begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1$ $= \mathbf{I}_{\mathbf{a}} \{ \mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{H} \in \mathbf{0}, \mathbf{CG} \mid \mathbf{x}_{1} \} \{ \mathbf{y}_{\mathbf{a}} \in \mathbf{y}_{1}, \mathbf{y}_{1}, \mathbf{y}_{1}, \mathbf{y}_{1}, \mathbf{y}_{1}, \mathbf{y}_{1} \}$ • • • • • • • • • • • •

 $\begin{bmatrix} 1 & 1 & 1 & 97. & 98 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1$

 $\begin{array}{c} A \\ [****_{1} * * *_{2} * *_{3} * *_{3} * *_{3}$

 $(B\&B) * (A + \{ 0 + 1, 1\} + (A + 1) + (A + 1$

 $\begin{array}{c} & \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{ x_{1} \right\} \right\} \right\} \\ \left\{ \left\{ x_{2} \right\} \left\{ x_$

A CI $i_1 = i_2 = i_1 = i_2 =$

ارا حواد بر بر] بود] ها هو آن از مد] با از مدرده ای از مدرده از از م

 $\begin{bmatrix} I_{x_{1}} & J_{1} & J_{2} & J_{3} & J_{3} & J_{4} & J_{4}$

 $\begin{array}{c} \left\{ \begin{array}{c} \left\{ 1, 0 \right\} \right\} = \left\{ 1, 0 \right\} + \left\{ 1, 0 \right\} +$

M. , I , THE I , M. I M. I - II MA, , I I

 $\begin{array}{c} \mathbf{F}_{\bullet} & [] \\ \mathbf{F}_{$

(• I).

 $\mathbf{v}_{0} = \mathbf{v}_{1} \mathbf{v}_{0} \mathbf{v}_{0}$ {_{_{1}}}^{4} · ^{_{1}}_{_{1}}]_{66} ~ _{2}^{4} ~ _{3}^{9} ~ _{6}^{1} ~ _{3}^{1} ~ _{6}^{1} ~ _{1}^{0} ~ _{1} ~ _{1}^{0} ~ _{1}^{0} ~ _{1} ~ _{1}^{0} ~ _{1} ~ _{1}^{0 $[[\mathbf{v}_1,\mathbf{v}_1] + \mathbf{v}_1 + \mathbf{v}_2] + [\mathbf{v}_1,\mathbf{v}_2] + [\mathbf{v}_1,$ • • 1 3 3 3 LE 3 * . • 1996] 3 30 16 10 6 10] 3 6 6 4 3 4] 4 4 4 , - 1,10 1,61 (, 1,1] 1 2000),] **.** . 1 10 1.201 1, 3 711 4.36 x3 - $(q_{11}, r_{12}, r_{12}, r_{13}, r_{$

e] ب] ب] به بره (e¹e⁴e⁴e⁴, ر)] ¹(¹ ب) برباً e1e⁴ (ج) بربا به المربع e1e⁴ (ج) با بردا المربع e1e⁴ (]* 1 x * 3] * 1 · . . . * G 1 * A B *] 1 x 1990 3* * 1 * 5 5 * * 1 * 1 * 5 $\mathbf{0} = \mathbf{0} =$ ه از م م الم الح ما الح الح الح الح الح الح الح الم الح الم الم الم الم الح الم الح الم الح الم الح ~] M~L _ 0 M _ 0 M),~L 1 0 (· · 6]] 0 0 0 _ 1 1 ,] M0 _ 20 1 0 . 0 1 -

 $\begin{array}{c} \left(\begin{array}{c} & ED \\ & e \\ &$

E / (108180; 800)74 . 108 242 0 0 800179 0 0 - B 8.7. IHD

 $\begin{array}{c} \mathbf{x} = \mathbf{x} + \mathbf$

 $\begin{array}{c} & \mathcal{M}_{1} & \mathcal{M}_{2} & \mathcal{$

 $\begin{array}{c} A_{0} \bullet_{1} \bullet_{2} \bullet_{2} \bullet_{3} \bullet_{3$

4. , a., a. , ...

 $\begin{array}{c} A_{\circ} *_{1} *_{2} \circ \cdots \circ *_{2} *_{2} *_{1} \\ \bullet * *_{2} *_{1} *_{2} \circ *_{2} *_$

 $\begin{array}{c} x_{1}^{*} \left\{ e^{-x_{1}} \circ \cdots \circ e^{-x_{1}} \right\} \left\{ e^{-x_{1}} \circ \cdots \circ e^{-x_{1}} \circ \cdots \circ e^{-x_{1}} \right\} \left\{ e^{-x_{1}} \circ \cdots \circ e^{-x_{1}} \circ \cdots \circ e^$

- ی ۱۹۹۰ [۱۹۹۸ مقید ۹ ۹ [۲ یو ۲۹ هام ۲۵۰۳ تو ۲و ۱۹۰۰ -هو [۲۰۱۶ تو ۲۹ یو ۲۰ ۲و [۲ یو ۹ هو محمد ۲۰ یو ۲و [۲ ۹۰۱

 $\begin{bmatrix} I_{4} & I$

- •* • • • • • • •
- · (+ * *)] *] * * * * * * * * *
-].•].•
- · · · · · · · · · · · · · · ·
- ', "ee "i,
-

2. plaint, north and produced and the second second

 $\begin{array}{c} A_{0} + \frac{1}{4} + \frac$

., ... INA

• *r, v*, *v*,

* 10] * 0 9 .0 0 *] . 0 * . 0 * 1 * .

{4¹ (α 1 · · · · α] # •⁰ (β] ² (β] ² (β ² α) ² (β ² α

 $\begin{array}{c} I_{x_{1}}]_{66 - y_{2} q_{2} y_{1}} & J \leftarrow 8 & I & I = 1 \\ J \to 1 & J \to$

CONCLUSIONS

 $\begin{array}{c} D_{j} \ j & \bullet \bullet \bullet_{k} \ \bullet \bullet \bullet_{k} \ \bullet_$

$$\begin{split} & F_{\chi^{0},0,0} \bullet \bullet \, \xi \, \chi_{1} \bullet \, \eta_{2} \, \neg_{\chi} \bullet \, \star \bullet \, \chi_{1} \circ \, \eta_{2} \, \neg_{\chi} \bullet \, \star \bullet \, \chi_{1} \circ \, \eta_{2} \, \neg_{\chi} \bullet \, \star \, \chi_{1} \circ \, \eta_{2} \, \neg_{\chi} \bullet \, \star \, \chi_{1} \circ \, \eta_{2} \, \neg_{\chi} \bullet \, \eta_{2} \, \neg_{\chi} \bullet \, \eta_{2} \, \, \eta_{2} \, \eta_{2} \, \bullet \, \eta_{2} \, \eta_{2} \, \eta_{2} \, \bullet \, \eta_{2} \, \eta_{2}$$

 X
 X
 X
 X
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y
 Y

د فری میرون و ۱۹ میرون و ۲۰ مار میرون و ۲۰ میرون و ۲۰ میرون و ۱۰ ماری میرون و ۲۰ ماری میروند. ۱۹ ماری و ۲۰ میرون و ۲۰ مار میرون و ۲۰ ماری میرون و ۲۰ میرون و ۲۰ ماری میروند.

A. • • A.

```
= \{ \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, 
                AAC - C . D J. J.
  AA_{A}/AG I_{PO}_{A} I_{P
  AA. .- .. Gj ..
A J.
A A • • • • D ] • ] •
A . . . . . . . .
Au. 1. 1. 1. 1. 1.
A • •] - H. • ·] • •
A \bullet \bullet A \circ D \bullet \bullet \bullet \bullet
  A . . . . . . . . . . . .
A • • ; F• · · · · · · · · · ·
  A • • • · · D. • · · .
  A G S G S G
  A, , ] • • • · · · · J • H J , set Ca, e ,
A 🚬 🗛 🖌 A
A_{J} H_{J} L_{I} L_{I}
As \mathbf{D}_{\mathbf{x}}, \mathbf
A ] . A ] .]•
  Boolly of a B. I. B. I. M. M. M. M.
  Branne Bronnel . Mennel .
  Be er lo . e. He . e. A.
  CG'/G E' \cup L G_{G} \cup E \cup V_{S}
  C]]••• 4.4 ... G E •*.-]•*
  Ca are Bas Bas
  Can a Bay go to the set of A Jag A go to the Jak
  G ISP GON G SII '46 S
  C_{n,m}
  C_{\bullet\bullet} • ] • 500 - C_{\bullet\bullet} • ] • J_{\bullet\bullet} • •
  Q ... G. ....
  D_{\bullet} ] = \bullet_{\bullet} ] A_{\bullet} = [ \bullet_{\bullet} ] \bullet_{\bullet} ] \bullet_{\bullet} ] \bullet_{\bullet} 
D, en , e E , e ] , e , e ] , g , e
  D_{\mathbf{x}} \bullet \mathbf{x} \bullet \mathbf{x
```

```
D_{\chi^00,\sigma^0} + \mathbf{L}_{\kappa} D_0 ] = \mathbf{L}_{\chi^0} ]_{\chi^0} = \mathbf{L}_{\chi^0} ] + \mathbf{L}_{\kappa} = \mathbf{L}_{\chi^0} \mathbf{L}_{\chi^0} + \mathbf{L}_{\chi^0} \mathbf{L}_{\chi^0} + \mathbf{L}_{\chi^0} \mathbf{L}_{\chi^0} \mathbf{L}_{\chi^0} + \mathbf{L}_{\chi^0} \mathbf
                      A • •]
   D_{0}, A_{\alpha}, A
   D_{1} = G_{1} = G_{1} = H_{1} = H_{1}
   D_{\mathbf{v}} \bullet_{\mathbf{v}} \bullet_{\mathbf{v}} \bullet_{\mathbf{v}} H_{\mathbf{v}} \bullet_{\mathbf{v}} \bullet
   Du_{0} = \left[ \begin{array}{ccc} \mathbf{a} \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x}
   E o o c o (E IC)
   E e Lee
   F . F. .
   Fige 'in the AD, the Fige this we want the set of
              .
₽_J_@⊀
   F_{1, M}, D_{1, M}.
   F_{\bullet}, F_{\bullet}, G_{\bullet}, G_{\bullet}, I_{\bullet}
   G E/CG D_{0}, n_{c} G_{1}, n_{c} D_{c}
   Gare Englis, Harre Lologie Gilar
   G. A A
   G_{I_{1}} = I_{I_{1}} = A_{I_{1}} + A_{I
   G1., 1, De
   G_{\mathbf{e}} = E_{\mathbf{e}} + [\mathbf{e}_{\mathbf{e}} + \mathbf{e}_{\mathbf{e}} + \mathbf{e}_
   G_{\mathbf{L}} \bullet [\mathbf{G}] \bullet
   Geoses Feeren Fe
   He hang Bang
   Hase Basies
H ], e Du , ] e , e A, e '] e (] e ' e e e &
           E_{x}, e_{x}, e_{x}, e_{x}, e_{x}, e_{x} (e. e_{x} De e_{x} ) e_{x}, e_{x}, e_{x} ()
   IIE • • · · · F • · · · · · ·
   I ED' Ca . . . . . . .
                      C A C D J. J.
                             x^{i} \{ \cdot, \cdot \}^{n} = [x^{i}]^{n} = B [x^{i} A_{n}]^{n}
                                            A D, •• ,• ,• ,• ,• ,• ,• ,•
                                                    AI, J., J. B. , M. J.
                                 ] * ... C. ... ] * . ...
                                            No so the lose to up
                                     A . G
                                 A \rightarrow GC \mathbb{F}_{0_1} \rightarrow \mathbb{D}_{\{\circ, \langle 1 \circ \circ \rangle, \langle 1 \rangle } (0 \cdots ) [0 \circ ]_{\infty}
                                 A - GC F. . . . . . . .
                          \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} E \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0
```

```
A. • , B.
```

 $\begin{array}{c} \textbf{R}, \textbf{R},$

```
. B. 1.1 / 1/1 / / 3 . . . :

. 1/1 . B. 1.1 / 1 / 1/2 . . . .

. B. 1.1 / . . . . . . .

. B. 1/1 / B. . . .
```

```
 \begin{array}{c} \mathbf{H}_{[1]} \left[ \mathbf{f}_{[1]} \left[ \mathbf{f}_{[1]} \left[ \mathbf{H}_{[1]} \left[ \mathbf{H}_{[2]} \left[ \mathbf{f}_{[2]} \right] \mathbf{H}_{[2]} \left[ \mathbf{f}_{[2]} \left[ \mathbf{f}_{[2]} \left[ \mathbf{H}_{[2]} \left[ \mathbf{f}_{[2]} \left[ \mathbf{f}_{[2]} \left[ \mathbf{H}_{[2]} \left[ \mathbf{f}_{[2]} \left[ \mathbf{f}_{[2
```

```
- 1,410,0% .
      ' Bar a Daja An, Ajje Frije, 'a Fra Dji'e, e a
        C_{\mathbf{1}} \bullet_{\mathbf{6}} , ]_{\mathbf{5}} \stackrel{1}{\to} \bullet_{\mathbf{5}} 
          n.n., . ./
                   . · · / · / .: 42,007
            ·, : ••• · · · · · · · ] • 1] 3*
                       [1991*]_{1} = [1991*]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1} = [1]_{1
 , , , , , , , , : D, • , • ,
                   · . , n . , / in a n . , n . ?: .
              · n (), · , · in n / . , min, n ,
    · , p , 1.11, 100001.0 11:
             1. + , 1. + + ; + + , ; +/p+. + +, ?: •x
             - 1,41 , 1.1:
              · M.M. ., , · · · / , M. r?: •*
              ., n, /?: A ]..
             ·, · · / ·:
             · NI 1/11 / A1] ·
                    . # 1. / 1 / / * * • . . • •
                     . N 1, 1, 1, 1/2 1, 0 V
            1111, 1 11 1, 1, 1, 1, 1, 1 (56 52 + 30 2 1 ] 66 + 4 ] of 1 1 33 33 + 12
      ...):
          1. 1. Nº , . /:
```

```
A. . . . C.
                                           B_{\xi} \stackrel{\bullet}{,} \bullet \stackrel{\bullet}{,} 0 \stackrel{\bullet}{,} 1 \stackrel{\bullet}{,} 1 \stackrel{\bullet}{,} 1 \stackrel{\bullet}{,} 1 \stackrel{\bullet}{,} \stackrel{\bullet}{,} A_{\bullet} \stackrel{\bullet}{,} 0 \stackrel{\bullet}{,} (35)
AAr ,- "• Gj •
A 🚬 🖌 A
G . . G . . .
Dere Joe, Aroles Le Joel
E so state of the set 
E. J. A. A. L.
F F F
  C A C D J. J.
   • • • • • • * * *
   • ₹
    CC, 10 4, 1, 9, 11
' m ] ' e e . e e C ] . e . L e
الم و با الرو با رو با م بو وا « D, وه و .
A. Co.
  A D, •• ,• • • • ,• • ,• • ] •
      AI, J. J. B, M. J.
A A • • • • D ] • ] •
A • • - H. • · · · · ·
A_{J} H_{J} C_{J} I_{\bullet}
A. I. A. A. A. J. A.
B. . . . . H. . . . A.
E I I.
G. . . Engl, Harre I, Jose Galar
He I Ar I a
  ] * ... C. . ] * 1 10 ...
    A . G .
   • •• ] • , A • ] • ,
    . •• ] • , A . ]• .
      , 14 h + , 4 L +
    I And I and a star star
```

I I A CAG QA A A CIN S

```
A_{2} \text{ is } \mathfrak{g}_{\mathcal{A}} \mathfrak{
     Ca ere B<sub>1</sub>e Bee
     G E/CG D, G = G_{[a,1]}, G = D
                             • • • • • • C • • • D ] - ] • •
                       • • • • • • G] ....
     \mathbf{D}_{\bullet} ] = \bullet_{\mathsf{s}} ] A_{\mathsf{s}} = \sum_{\mathsf{s}} \{\mathsf{s}_{\mathsf{s}}\} \{\mathsf{s},\mathsf{s}\}\} \{\mathsf{s}_{\mathsf{s}}\} \{\mathsf{s}_{\mathsf{s}}\} \{\mathsf{s},\mathsf{s}\}\} \{\mathsf{s}_{\mathsf{s}}\} \{\mathsf{s},\mathsf{s}\}\} \{\mathsf{s}_{\mathsf{s}}\} \{\mathsf{s},\mathsf{s}\}\} \{\mathsf{s},\mathsf{s}\}
D_{\chi^{00}} [ \mathbf{r} + \mathbf{r}_{\omega} D_{\mathbf{0}} ] [ \mathbf{r} + \mathbf{r}_{\omega} ] \mathbf{r} = \mathbf{r} ] \mathbf{r} + \mathbf{r}_{\omega} + \mathbf{r}_{\omega} \mathbf{r}_{\omega}
                                   A • •]
D_{\mathbf{x}^{\mathbf{0}} \circ \mathbf{1}} \cdot \mathbf{1}_{\mathbf{x}} \bullet \mathbf{1}_{\mathbf{x}} ] \bullet \mathbf{x}_{\mathbf{x}} \cdot \mathbf{1}_{\mathbf{x}} \circ \mathbf{1}_{\mathbf{x}} \circ \mathbf{1}_{\mathbf{x}} \bullet \mathbf{1}_{\mathbf{x}} \cdot \mathbf{1}_{\mathbf{x}} \mathbf{0}_{\mathbf{x}} \cdot \mathbf{0}_{\mathbf
Dn_{o} = \left[ \begin{array}{ccc} \mathbf{1} & \mathbf{1} \end{array} \right] = \left[ \begin{array}[ \mathbf{1} & \mathbf{1} \end{array} \right] = \left[ \begin{array}[ \mathbf{1} & \mathbf{1} \end{array} \right] = \left[ \begin{array}[ \mathbf{1} & 
Fige 1, we are AD, we are Fige or 1, we we do yo
                       • J 🛯
```

```
AAC ~ C D J. J.
      AA_{a}/AG is a interval of the transformed of the transformed of the transformation o
      A]. . . . . . . .
      Autor por sola je sola
      A . . . . . . . . . . . . .
     A ..... C. ....
      A A, 1 . .
     A Jacor
     Branne Brong ! . Me so ye.
      CG'/G E' \cup I \subseteq G_{[1]} \cup E \cup I \subseteq G_{[1]}
      He hall Bar
      H_{1} \rightarrow \chi_{\chi} q_{X} D_{0} a_{1} a_{X} a_
      IIE • • · · · F • · · · · · · ·
     I ED' Co o state in the
            In Entry Let Joy & U.
             A' - GC F, . . ']] . ', ...
           [0,1,1] \to [1,1] \to [1
            ] (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1
           ] . A . A . A . A . A . A.
           ] . ] ] ( . . G] ] A A . ] . . .
          •••]• -Du,•]• ••] • <u>*</u> • • -<del>*</del> • • • •
     ', . . E . Du Jor
     - , n., / · . , n., . ()
     A_{x,y} = \{ e_{x,y} \in A_{x,y} \}
     C_{a}
     Dress are E 10] . a . B J . g. g.
```
A. • • • D.

j. Front, Dj. Dob

•,],], C••	
៲៸៲៲ _៰ Ci _{λλ} i].,] H], , . G , .
DA .	A • • • · · · · · · · · · · · · · · · ·
• • • F] • •	
• , Hj •	J., H J., A J.
A , ,] • ,•*	A • • , H · · · A · • J · · ·
°.∎.⊎.,].∎.,*	Car · J As ye · ye
F] • •] •.	,] « Ca • *•
140 J 143	A, u , G , J, B
• <u>, ,</u> • • <u>,</u> •	• • • • • • • • • • • • •
· . · .] 16 • 5 1"	
140 g ¹ 1 1]**]• {*• 5* L* 5* 9 • * 6• 3• * * *
•] , ب , E و ۱ ۹ , و H] , . ب و•
· • • •] • •	$A \bullet \mathfrak{g} , G \mathfrak{g} , \mathfrak{h} \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g} \mathfrak{g} g$

- • • • •

 $\begin{array}{c} F_{j} \downarrow \downarrow \downarrow \\ F_{j} \downarrow \downarrow \downarrow \\ F_{j} \downarrow \\ F_$