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The Turing Trap: The Promise & Peril of 
Human-Like Artificial Intelligence 

Erik Brynjolfsson

In 1950, Alan Turing proposed a test of whether a machine was intelligent: could a 
machine imitate a human so well that its answers to questions were indistinguish-
able from a human’s? Ever since, creating intelligence that matches human intelli-
gence has implicitly or explicitly been the goal of thousands of researchers, engineers, 
and entrepreneurs. The benefits of human-like artificial intelligence (HLAI) include 
soaring productivity, increased leisure, and perhaps most profoundly a better under-
standing of our own minds. But not all types of AI are human-like–in fact, many 
of the most powerful systems are very different from humans–and an excessive fo-
cus on developing and deploying HLAI can lead us into a trap. As machines become 
better substitutes for human labor, workers lose economic and political bargaining 
power and become increasingly dependent on those who control the technology. In 
contrast, when AI is focused on augmenting humans rather than mimicking them, 
humans retain the power to insist on a share of the value created. What is more, 
augmentation creates new capabilities and new products and services, ultimately 
generating far more value than merely human-like AI. While both types of AI can 
be enormously beneficial, there are currently excess incentives for automation rath-
er than augmentation among technologists, business executives, and policy-makers.

A lan Turing was far from the first to imagine human-like machines.1 Ac-
cording to legend, 3,500 years ago, Dædalus constructed humanoid stat-
ues that were so lifelike that they moved and spoke by themselves.2 Near-

ly every culture has its own stories of human-like machines, from Yanshi’s leather 
man described in the ancient Chinese Liezi text to the bronze Talus of the Argo-
nautica and the towering clay Mokkerkalfe of Norse mythology. The word robot 
first appeared in Karel Čapek’s influential play Rossum’s Universal Robots and de-
rives from the Czech word robota, meaning servitude or work. In fact, in the first 
drafts of his play, Čapek named them labori until his brother Josef suggested sub-
stituting the word robot.3

Of course, it is one thing to tell tales about humanoid machines. It is some-
thing else to create robots that do real work. For all our ancestors’ inspiring sto-
ries, we are the first generation to build and deploy real robots in large numbers.4 
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Dozens of companies are working on robots as human-like, if not more so, as 
those described in the ancient texts. One might say that technology has advanced 
sufficiently to become indistinguishable from mythology.5

The breakthroughs in robotics depend not merely on more dexterous me-
chanical hands and legs, and more perceptive synthetic eyes and ears, but also on 
increasingly human-like artificial intelligence (HLAI). Powerful AI systems are 
crossing key thresholds: matching humans in a growing number of fundamental 
tasks such as image recognition and speech recognition, with applications from 
autonomous vehicles and medical diagnosis to inventory management and prod-
uct recommendations.6 

These breakthroughs are both fascinating and exhilarating. They also have 
profound economic implications. Just as earlier general-purpose technologies 
like the steam engine and electricity catalyzed a restructuring of the economy, our 
own economy is increasingly transformed by AI. A good case can be made that AI 
is the most general of all general-purpose technologies: after all, if we can solve 
the puzzle of intelligence, it would help solve many of the other problems in the 
world. And we are making remarkable progress. In the coming decade, machine 
intelligence will become increasingly powerful and pervasive. We can expect re-
cord wealth creation as a result. 

Replicating human capabilities is valuable not only because of its practical po-
tential for reducing the need for human labor, but also because it can help us build 
more robust and flexible forms of intelligence. Whereas domain-specific technol-
ogies can often make rapid progress on narrow tasks, they founder when unex-
pected problems or unusual circumstances arise. That is where human-like intel-
ligence excels. In addition, HLAI could help us understand more about ourselves. 
We appreciate and comprehend the human mind better when we work to create 
an artificial one. 

These are all important opportunities, but in this essay, I will focus on the ways 
that HLAI could lead to a realignment of economic and political power. 

The distributive effects of AI depend on whether it is primarily used to aug-
ment human labor or automate it. When AI augments human capabilities, en-
abling people to do things they never could before, then humans and machines 
are complements. Complementarity implies that people remain indispensable for 
value creation and retain bargaining power in labor markets and in political deci-
sion-making. In contrast, when AI replicates and automates existing human ca-
pabilities, machines become better substitutes for human labor and workers lose 
economic and political bargaining power. Entrepreneurs and executives who have 
access to machines with capabilities that replicate those of humans for a given 
task can and often will replace humans in those tasks.

Automation increases productivity. Moreover, there are many tasks that are 
dangerous, dull, or dirty, and those are often the first to be automated. As more 



274 Dædalus, the Journal of the American Academy of Arts & Sciences

The Turing Trap: The Promise & Peril of Human-Like Artificial Intelligence

tasks are automated, a fully automated economy could, in principle, be structured 
to redistribute the benefits from production widely, even to those people who are 
no longer strictly necessary for value creation. However, the beneficiaries would 
be in a weak bargaining position to prevent a change in the distribution that left 
them with little or nothing. Their incomes would depend on the decisions of 
those in control of the technology. This opens the door to increased concentra-
tion of wealth and power.

This highlights the promise and the peril of achieving HLAI: building machines 
designed to pass the Turing Test and other, more sophisticated metrics of hu-
man-like intelligence.7 On the one hand, it is a path to unprecedented wealth, in-
creased leisure, robust intelligence, and even a better understanding of ourselves. 
On the other hand, if HLAI leads machines to automate rather than augment hu-
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able to solve types of problems that are solvable by any existing human, animal, or 
machine. That suggests that AGI is not human-like. 

The good news is that both automation and augmentation can boost labor pro-
ductivity: that is, the ratio of value-added output to labor-hours worked. As pro-
ductivity increases, so do average incomes and living standards, as do our capa-
bilities for addressing challenges from climate change and poverty to health care 
and longevity. Mathematically, if the human labor used for a given output declines 
toward zero, then labor productivity would grow to infinity.10 

The bad news is that no economic law ensures everyone will share this growing 
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If capital in the form of AI can perform more tasks, those with unique assets, 
talents, or skills that are not easily replaced with technology stand to benefit dis-
proportionately.18 The result has been greater wealth concentration.19 

Ultimately, a focus on more human-like AI can make technology a better sub-
stitute for the many nonsuperstar workers, driving down their market wages, 
even as it amplifies the market power of a few.20
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To understand the limits of substitution-oriented automation, consider a thought 
experiment. Imagine that our old friend Dædalus had at his disposal an extreme-
ly talented team of engineers 3,500 years ago and built human-like machines that 
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required: fully 60 percent of people are now employed in occupations that did not 
exist in 1940.38 In short, automating labor ultimately unlocks less value than aug-
menting it to create something new.

At the same time, automating a whole job is often brutally difficult. Every job 
involves multiple different tasks, including some that are extremely challenging 
to automate, even with the cleverest technologies. For example, AI may be able to 
read mammograms better than a human radiologist, but it is not very good at the 
other twenty-six tasks associated with the job, according to O-NET, such as com-
forting a concerned patient or coordinating on a care plan with other doctors.39 
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income of 37 percent, while long capital gains have a variety of favorable rules, in-
cluding a lower statutory tax rate of 20 percent, the deferral of taxes until capital 
gains are realized, and the “step-up basis” rule that resets capital gains to zero, 
wiping out the associated taxes, when assets are inherited. 

The first rule of tax policy is simple: you tend to get less of whatever you tax. 
Thus, a tax code that treats income that uses labor less favorably than income de-
rived from capital will favor automation over augmentation. Treating both busi-
ness models equally would lead to more balanced incentives. In fact, given the 
positive externalities of more widely shared prosperity, a case could be made for 
treating wage income more favorably than capital income, for instance by expand-
ing the earned income tax credit.44 It is unlikely that any government official can 
define in advance exactly which technologies and innovations augment humans 
rather than merely substitute for them; indeed, most technologies have elements 
of each and the outcome depends a great deal on how they are deployed. Thus, 
rather than prescribe or proscribe specific technologies, a broad-based set of in-
centives can gently nudge technologists and managers toward augmentation on 
the margin, much as carbon taxes encourage myriad types of cleaner energy or 
research and development tax credits encourage greater investments in research.

Government policy in other areas could also do more to steer the economy clear 
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