You study eye formation using Mexican cave-dwelling blind fish. You know that blindness is a trait controlled by multiple genes and inherited in a recessive manner.

A blind fish from a true-breeding line in one cave was crossed to a blind fish from a true-breeding line in another cave. If the mutation

Let's add more fish

You isolate two more blind fish strains (#4 and #5), cross them to #1, #2, and #3, and get the following results:

#1	#2	#3	#4	#5
-	-	+	+	+
-	-	+	+	+
+	+	-	+	-
+	+	+	-	+
+	+	-	+	-
	#1 - + + +	#1 #2 + + + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Based on these results, at least how many genes are working to produce sight? A.1 B.2 C.3 D.4 E.5

